Splitting for Multi-objective Optimization
نویسندگان
چکیده
We introduce a new multi-objective optimization (MOO) methodology based the splitting technique for rare-event simulation. The method generalizes the elite set selection of the traditional splitting framework, and uses both local and global sampling to sample in the decision space. In addition, an ε-dominance method is employed to maintain good solutions. The algorithm was compared with state-of-the art MOO algorithms using a prevailing set of benchmark problems. Numerical experiments demonstrate that the new algorithm is competitive with the well-established MOO algorithms and that it can outperform the best of them in various cases.
منابع مشابه
An effective ant colony optimization algorithm for multi-objective job-shop scheduling with equal-size lot-splitting
This paper proposes several novel hybrid ant colony optimization (ACO)-based algorithms to resolve multi-objective job-shop scheduling problem with equal-size lot splitting. The main issue discussed in this paper is lot-splitting of jobs and tradeoff between lot-splitting costs and makespan. One of the disadvantages of ACO is its uncertainty on time of convergence. In order to enrich search pat...
متن کاملAERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS
In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...
متن کاملMulti-objective Optimization of a Projectile Tip for Normal Penetration
The main purpose of the present work is multi-objective shape optimization of a projectile tip for impacting and normal penetrating. Velocity drop, weight and inner volume of projectile have been considered as three conflicting objective functions. For this purpose, at the first step, finite element modeling was done using ABAQUS/Explicit and projectile penetration was examined in different ge...
متن کاملOptimizing a bi-objective preemptive multi-mode resource constrained project scheduling problem: NSGA-II and MOICA algorithms
The aim of a multi-mode resource-constrained project scheduling problem (MRCPSP) is to assign resource(s) with the restricted capacity to an execution mode of activities by considering relationship constraints, to achieve pre-determined objective(s). These goals vary with managers or decision makers of any organization who should determine suitable objective(s) considering organization strategi...
متن کاملA FAST FUZZY-TUNED MULTI-OBJECTIVE OPTIMIZATION FOR SIZING PROBLEMS
The most recent approaches of multi-objective optimization constitute application of meta-heuristic algorithms for which, parameter tuning is still a challenge. The present work hybridizes swarm intelligence with fuzzy operators to extend crisp values of the main control parameters into especial fuzzy sets that are constructed based on a number of prescribed facts. Such parameter-less particle ...
متن کامل